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LElTER TO THE EDITOR 

Mobility edge in one-dimensional tight-binding models 

Andrea Crisanti 
Institut de Physique Theorique, Departement de Physique, Ecole Polytechnique Federale, 
CH-1015 Lausanne. Switzerland 

Received 10 May 1989 

Abstract. We introduce a class of one-dimensional tight-binding models with square-well- 
like potentials, V,, = * V, which exhibit a mobility edge in the spectrum at the energy 
E, = 2 - V, provided that V < 2. Using the transfer matrix method we are able to find the 
analytical expression of both the localisation length and the density of states for the whole 
range of energies E. The transition from extended to localised states is characterised by 
a singularity in the spectrum as E, i s  approached from below. 

Recently a great deal of work has been devoted to the study of one-dimensional 
localisation in the presence of random and pseudorandom potentials (see, e.g., Lee 
and Ramakrishnan 1987). Perhaps the most simple non-trivial example of one- 
dimensional disordered systems is the one-dimensional discrete Schrodinger equation 
with diagonal disorder, 

cLn+,+cLn-,=(E-Vn)cLn (1) 

where +,, is the amplitude of the wavefunction on the nth site of a one-dimensional 
lattice, V,, is the diagonal potential and E is the energy. This model is also referred 
to as the nearest-neighbour tight-binding model. For random V,, equation (1) is nothing 
but the one-dimensional Anderson model in the tight-binding approximation (Ander- 
son 1958). There exist rigorous results (Ishii 1973, Kunz and Souillard 1980, Delyou 
et a1 1985) proving that for a large class of probability distributions of the random 
potential V,,, all the states are exponentially localised. For periodic potentials V,,, in 
contrast, the Bloch theorem ensures that all the states are extended and organised in 
a band structure. This raises the interesting question of whether there exist potentials 
such that the behaviour of the system (1) falls, in some sense, in between the two 
extreme cases of the Anderson model and the Bloch model. 

One of such potentials has been found recently by Griniasty and Fishman (1988) 
by studying the motion of an electron in a one-dimensional lattice with a weak sinusoidal 
potential whose phase varies as n”, 

(2) 
where V ,  a and U are positive constants. This potential belongs to a class of pseudoran- 
dom and incommensurate potentials (for reviews on incommensurate potentials see, 
e.g., Simon (1982) and Sokoloff (1985)) lying in between the random Anderson model 
and the periodic Bloch model. In fact, for CY rational and U integer we get back to 
the Bloch model, whereas for a irrational and U 5 2 it has been shown (Griniasty and 
Fishman 1988) that the model defined by (1) and (2) is ‘equivalent’ to the Anderson 
model. 

v,, = v cos( ran”) 
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For V < 2  and Y <  1, Das Sarma et al (1988) have found that the model has both 
localised and extended states, separated by a mobility edge in the spectrum at the 
energy E,= 2-  V. This result was found by solving numerically (1) and (2) by direct 
diagonalisation of the tight-binding Hamiltonian and by calculating the localisation 
length using the recursive transfer matrix method. Their discovery of a mobility edge 
is quite interesting since it was believed that one-dimensional models do not allow for 
it (Ishii 1973, Thouless 1974). In supporting their results by a heuristic semiclassical 
theoretical argument, they introduce and solve numerically a simpler model with a 
square-well-like potential, which captures many features of the original model. In 
particular they have the same mobility edge and similar shape for the density of states. 
An interesting property of this model is that it is solvable analytically. In this letter 
we first calculate the analytical expression of the localisation length and of the density 
of states for this model, confirming the numerical results of Das Sarma et a1 (1988). 
Then we show that there is a full class of systems with square-well-like potentials 
which exhibit a similar behaviour, and in particular a mobility edge at E, = 2 - V. 

The simplified model of Das Sarma er al(1988) is defined by (1) with a square-well- 
like potential V, (V,, = * V, V >  0) with a constant depth (2 V) and variable well lengths 
L ,  = qmLo, with q > 1. At V, there can be with equal probability either + V or - V. 

For one-dimensional systems one has (Thouless 1974, De Callan et al 1985), 

where [-' is the localisation length and r is the integrated density of states of ( l ) ,  i.e. 
r( E )  = jza d E '  p(E') .  The (, . .) means averaging over the realisations of the potential. 
In our case, since the form of V, is completely determined once V, is given, (. . .) 
means averaging over the two possible initial states V, = * V. 

To calculate GN,,,  we will use the transfer matrix method. The first step is to rewrite 
(1)  as 

(*;; l )=Qn(;y,)  
a=( E - V, -3 

where Q,, is the transfer matrix from the site n to the site n + 1. Thus, 

(4) 

Equations (4) and (5) hold for any potential V,,. In our case V,, can take only two 
values, so there will be only two different transfer matrices, 

A=(';" -A) B = (  E + V  -1 ,,) 
corresponding to V, = + V and V,, = - V, respectively. It is well known that the localisa- 
tion properties of the model (1) depend only on the form of the potential V,,, i.e., in 
the language of the transfer matrices, on the rule according to which the succession 
of A and B in the product (5) is built. For example, if after a matrix A (or 8 )  there 
can be with equal probability either a matrix A or a matrix B, then e-' is positive in 
the band defined by p ( E ) # O .  All the states are localised. This corresponds to the 
one-dimensional Anderson model with a * V  random potential. We note that this 
result remains valid even if one considers a sequence of matrices A and B obtained 
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from a one-step two-state Markov process (Jonston and Kramer 1986, Crisanti et a1 
1989). 

On the other hand, a periodic sequence, such as for example ABAB.. . , leads to 
[ - I =  0 in the regions where p ( E )  is non-zero, so that all the states are extended. We 
note that in this case, unlike the previous one, the spectrum consists of two bands 
separated by a gap. This is not surprising since periodic sequences correspond to 
periodic potentials. Thus this is nothing other than the Bloch theorem. The existence 
of only two bands is due to the fact that the model is defined on a lattice. 

In the model of Das Sarma et a1 the potential has a structure of the form, for 
example, V,  = V, V2 = V, = - V, V, = V, = V, = V, = V, . . . , (or the one obtained by 
exchanging V with - V). This particular case corresponds to q = 2 and Lo = 1. We 
will see below that the localisation properties do not depend on q and Lo. Such a 
potential leads to the product 

N,, ,  n Q, = B"NA"~-I  . . . BX2AXi (7) 
n = 1  

N where xl = 1, x,  = 2x,-, , and N,,, = Z,=, x, = 2 N  - 1. Here we have assumed that N, 
the number of 'jumps' from A to B and vice versa, is even. The case of odd N will 
be discussed below. This ordering is neither random nor periodic, so in general we 
may expect some new behaviour. 

By defininition Det Q, = 1 ;  thus we can write A = Ci'AC, and B = Ci'kC,,  where 

with Re z,,b 2 0  and C A , B  constant matrices with determinant one. Defining C = C,C,' 
one has 

No,, n Q, = CilBxh c3h-i . . . C-'Bx2CAx~CA. 
, = I  

Each matrix 3 and fix is diagonal; thus by using the identity, 

( 9 )  

all the matrices C can be moved to the right end of the product. Starting from the 
rightmost matrix and proceeding to the left we have 

N,,, n Q, = B x N A x v - ,  . . , B x 2 A x I ~ ( B ) ~ ( I )  N N - 1  G ( -  N I L . .  . G$- ' )G: l )~A.  (11) 
n = l  

The superscripts B, 1, -1 refer to the matrices C i l  , C, C-l respectively. All the matrices 
G will be of the form 

1 . N - p  1 . N - p  

n (odd) n (even) 
Y N - p Z Z a  x n + z b  x n  

with different constants gij, depending on the superscript. For example, if the super- 
script is B, then gij = [Ci ' Iv .  To analyse the large-" limit of ( 5 )  we do not need to 
know the explicit form of these constants, so we can forget about the superscripts. 
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Let us see what is the effect of II Q, on a vector ( &). The first matrix, CA,  is 
constant and simply transforms the initial vector into another constant vector. Suppose 
we have applied n - 1 matrices G; then the application of G,  gives a new vector whose 
components are obtained as follows. 

The first new component is given by the sum of the old first component times a 
constant plus the old second component times a constant times 

The second new component is given by the sum of the old second component times 
a constant plus the old first component times a constant times eZyn. 

It is obvious that in the large-" limit gives the same informations as t,bN,,,, 
so we will concentrate on the first component. Since Re z,,b 3 0 then Re y, 2 Re yn,  if 
n > n'. As a consequence the leading term in ~,b~,,,+~ is of the form 

(14) 
where the exponential comes from the product of A and 6, and p and r are constants. 
It is easy to realise that this form, with different p ,  r, is valid also for odd N. Since 
N /  N,,, + 0 as N ,  + 03, in the large- N,,, limit we can neglect the contribution of G in 
( 1 1 ) .  The same conclusion is obtained considering I ,!IN, , ,  instead of ~,b~,,,+~. Therefore 
we can write 

+N,, ,+I  =eyb(prN +. . .) 

where f N  goes to zero as N, + CO. We note that (15) is valid for any V since it follows 
from the geometrical form of the potential. 

To evaluate the average in (3) we note that exchanging + V with - V is equivalent 
to exchanging A with B. Therefore a similar calculation for this sequence leads again 
to (15), but with exchanged z, and z b .  By definition V,= + V  and V,= - V have the 
same probability, so that one has 

A = $( Z, + Z b ) .  (16) 
Substituting for z, and z b  their expression in terms of V and E, we finally get for V < 2 

(s-' = 0 

(17c) 
where E ,=2-  V, E b = 2 +  V and p(E)=-dT(E) /dE.  

From (17) we see that there is only one band, which ranges from -Eb to Eb, but 
for I E I < E, the states are extended, whereas for E, < I E I < Eb they are localised. The 
energy E, is identified as the mobility edge of the system. The transition from extended 
to localised states is characterised by a singularity in the density of states at E,, p - 
(E,- as E -P E ; ,  p - O( 1) as E + E : .  The localisation length diverges at E :  
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as 5-l - ( E  - E,)’”. All these results are in agreement with the numerical results of 
Das Sarma er a1 (1988). In figure 1 we show the density of states for V =  1 obtained 
both from a numerical solution of the model (a )  and from our solution (b). We note 
that in the model defined by (1) and (2) the ‘jumps’ from - V to + V (and vice versa) 
are smoother, so we may expect weaker singularities. Indeed the numerical results of 
Das Sarma et a1 are consistent with a logarithmic singularity of the density of states 
at E,. 

An important consequence of our solution is that results (16) and (17) can be 
extended to all models with square-well-like potentials which can be represented by 
a product of matrices of the form (7) with limN,, N/X:= ,  x, = 0. We stress, however, 
that for these generalised models care must be taken in handling the limit in (3). In 
fact, depending on the average and on the x,, the limit may not exist. To be more 
explicit let us consider the succession In t,bN,,, / N,,, and study its behaviour as N,,, + 00. 

Suppose that xN / Z:=-,’ x, goes to zero in the limit N + 00. In this case it can be 
shown that the succession converges to a well defined limit which, for the product (7), 
is given by the N + ~ o  limit of (15). This in turn implies that the limit (3) is always 
well defined. The explicit form of A in general may depend on the probability of 

I I I 
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L I I I 
-4 - 2  0 2 4 
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E 
Figure 1. The density of states of the simplified model of Das Sarma er a/ (1988) for V = 1 .  
( a )  Numerical solution; ( b )  analytical solution (equation ( 1 3 ) ) .  
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having Vo = + V (or - V). For example, if this probability is i, then A is given by (16). 
On the other hand, if xN/X;=-:  x, remains finite in the limit N + m ,  i.e. either it 

converges to a finite limit or oscillates between two finite values, then the succession 
In 4N,,, / N,,, does not have a well defined limit as N,,, + 03, even if it is bounded. Thus, 
in this case, all we can say is that in general the limit A does not exist, but there will 
be well defined inf lim and sup lim. The existence of the limit A, i.e. inf l im=sup 
lim = A, strongly depends on the average (. . .). It can be shown that the only case for 
which A exists is when Vo = + V and Vo = - V have the same probability, in which case 
A has the form (16). We note that the model of Das Sarma et a1 (1988) belongs to 
this second class. 

It is easy to realise that all the models for which A exist will have similar features. 
In particular they will exhibit a mobility edge at E, = 2 - V (for V < 2) with the same 
strength of the singularity in the spectrum. Numerical simulations, not reported here, 
for different sequences of x,, are in very good agreement with these theoretical 
predictions. 

It is a pleasure to thank Professor H Kunz for useful discussions. We also thank A 
Pasquarello for many stimulating discussions. This work is partially supported by 
CNR grant 203.02.19. 
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